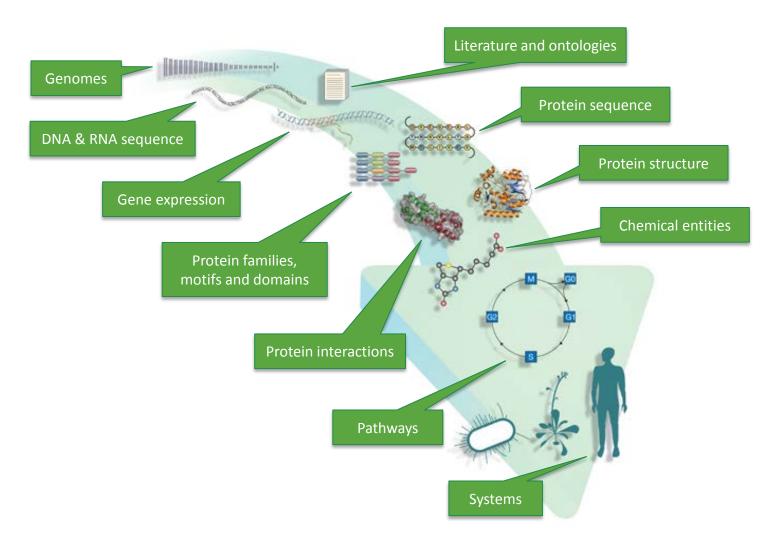


'Bioinformatics in academia as related to eHealth' - including the "Genomic Virtual Lab"

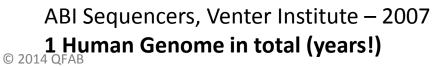

Dr Gareth Price

Head of Computational Biology

Queensland Facility of Advanced

Bioinformatics

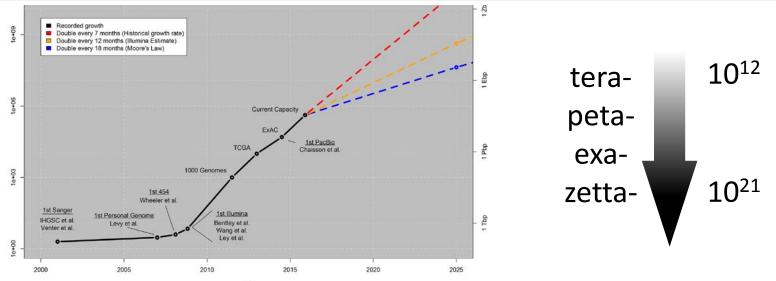
From Genomes to Systems


What is Next Gen Sequencing?

Next Generation Sequencing:

- high-throughput sequencing
- massive parallel short (and now long) read sequencing
- deep sequencing

In reality NGS really just refers to the scale of sequencing. For Example:



Illumina HiSeq 2000s, BGI – 2013

2 Human Genomes per machine (days!)

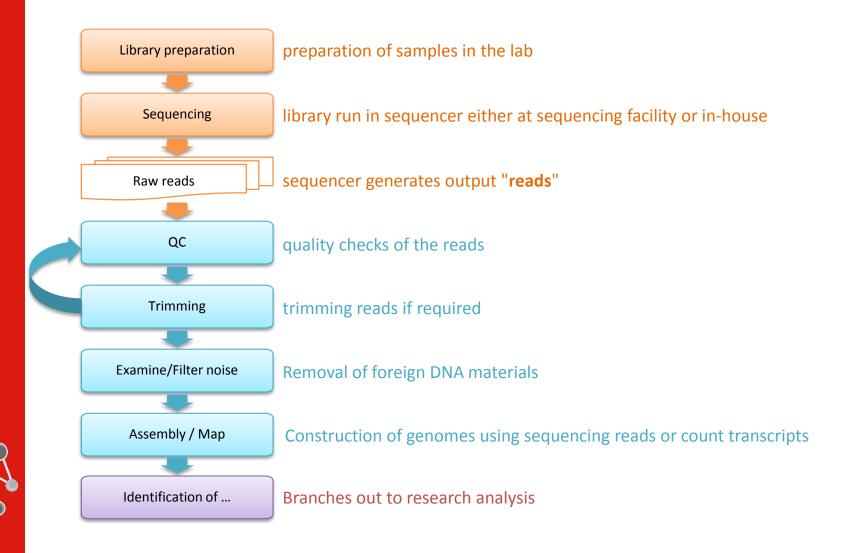
Big Data: Acquisition, Storage, Distribution, and Analysis

Data Phase	Astronomy	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500-900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1-17 PB/year	1–2 EB/year	2-40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement

Submarine Cable Map TeleGeography

Data Transfer speeds

- Datasets potentially very large (many Tbs)
- Download time is lengthy and at risk of failure and interruption


Average Ping times between Australia and EMBL (UK) and NCBI (USA)

Ping (msec)	Brisbane	Canberra	Sydney	London	Washington
Brisbane	_	15.1	11.7	319.9	235.4
Canberra	86.0	_	5.8	310.2	218.7
Sydney	255.0	5.3	_	310.3	239.9
London*	499.5	307.3	311.0	_	89.4
Washington	521.7	222.1	230.7	89.3	_

Global Ping Statistics (https://wondernetwork.com/pings). Data is generated with unix command line tool ping, executing 30 pings from source (left-hand column) to destination (table header), displaying the average.

Overview of NGS data flow

Tools – Academic and Clinical

Freeware

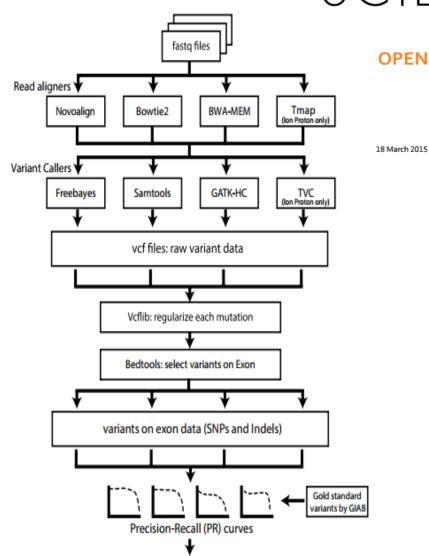
- Genome Analysis Toolkit (GATK)
- Virtual Labs / Machines
 - Galaxy
 - R Studio (Bioconductor)
 - Command Line

Commercial

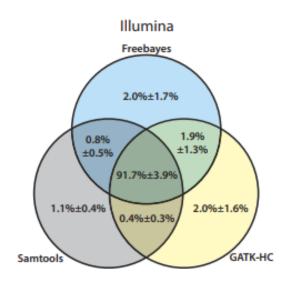
- Agilent
 - Cartagenia Bench Lab for Molecular Pathology
- Illumina
 - BaseSpace
- Qiagen
 - CLC-Bio Suite of Analysis Products
 - Ingenuity Pathway Analysis
 - Ingenuity Variant Analysis
 - ANNOVAR

ThermoFisher

- Ion Reporter
- Google Genomics
- Microsoft Genomics
- Oracle Healthcare Precision Medicine
 http://grouthbio.com/Genome Software Service.php



SCIENTIFIC REPORTS



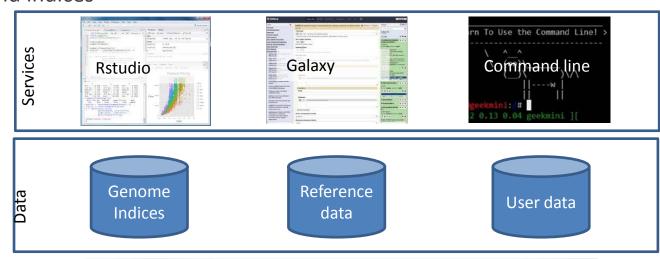
Comparison by APR (area under PR curve)

OPEN Systematic comparison of variant calling pipelines using gold standard personal exome variants

Sohyun Hwang^{1,2,*}, Eiru Kim^{2,*}, Insuk Lee² & Edward M. Marcotte¹

"We observed different biases toward specific types of SNP genotyping errors by the different variant callers"

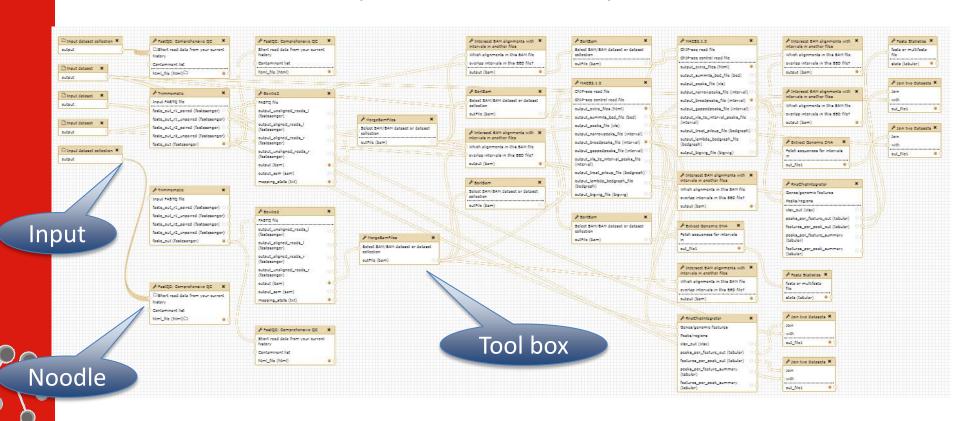
Health Solutions to the use Genomic Information


- American College of Medical Genetics
 - 2015: doi:10.1038/gim.2015.30
 - Benign, Likely Benign, Of Unknown Significance, Likely Pathogenic and Pathogenic
- NIH National Human Genome Research Institute:
 Division of Genomic Medicine
 - Undiagnosed Rare Disorders, GWAS studies, report formats
- Global Alliance for Genomics and Health (GA4GH)
 - policy-framing and technical standards-setting organization, seeking to enable responsible genomic data sharing within a human rights framework

Genomics Virtual Labs

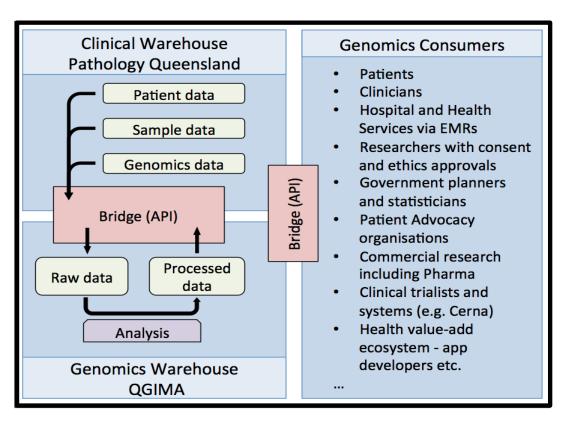
- Virtual Machines with pre-installed suite Galaxy houses your uploaded data, of tools for performing bioinformatics analyses
- Public instances all around the world
- gvl.org.au
- usegalaxy.org.au [currently Galaxy Qld]
- GVL provides compute and storage
- Galaxy houses reference data, public data and indices

- computed data and results
- Direct import from public repositories
- Data visualisation options
- Data sharing (with and without data duplication)
- Big community
- Easy registration



Galaxy is a workflow engine

A Galaxy workflow is a series of tools and dataset actions that run in sequence as a batch operation


Genomic Information Management

Improving the health of Queenslanders by delivering genomic medicine

Leads

David Hansen, AeHRC, CSIRO John Pearson, QIMRB MRI

Collaborators

Dominique Gorse, QCIF
Paul Leo, QUT
Pamela Pollock, QUT
Cas Simons, UQ
Nic Waddell, QIMRB MRI
Amanda Spurdle, QIMRB
MRI
Sunil Lakhani, PQ & UQ
Naomi Wray, IMB, QBI &
UQ
Hugo Leroux, AeHRC, CSIRO

Alejandro Metke, AeHRC,

CSIRO

Contacts

www.qfab.org

contact@qfab.org training@qfab.org

g.price@qfab.org

Balancing Sharing with Identification

Identification of individuals by trait prediction using whole-genome sequencing data

Christoph Lippert^{a,1}, Riccardo Sabatini^a, M. Cyrus Maher^a, Eun Yong Kang^a, Seunghak Lee^a, Okan Arikan^a, Alena Harley^a, Axel Bernala, Peter Garsta, Victor Lavrenkoa, Ken Yocuma, Theodore Wonga, Mingfu Zhua, Wen-Yun Yanga, Chris Changa, Tim Lub, Charlie W. H. Leeb, Barry Hicksa, Smriti Ramakrishnana, Haibao Tanga, Chao Xiec, Jason Piperc, Suzanne Brewerton^c, Yaron Turpaz^{b,c}, Amalio Telenti^b, Rhonda K. Roby^{b,d,2}, Franz J. Och^a, and J. Craig Venter^{b,d,1}

PNAS | September 19, 2017 | vol. 114 | no. 38 www.pnas.org/cgi/doi/10.1073/pnas.1711125114 10166-10171

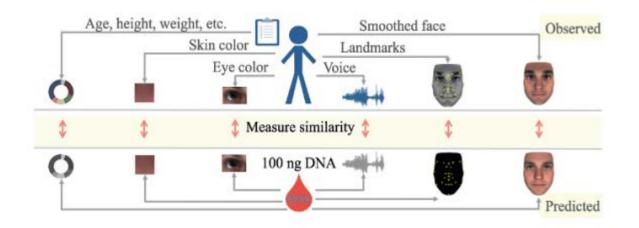
3D facial

Height

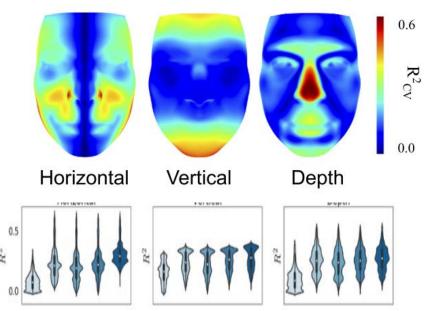
Skin colour

structure

Weight


Sex

Voice


BMI

Hair Colour

- Biological age
- Eye colour
- **Baldness**

Sex + Ancestry + SNPs + Age + BMI

Left – Observed Right - Predicted

- limitations in statistical power (n=1,061)
- individually, each model provided limited information about an individual's identity
- multiple prediction models enabled matching between genomes and phenotypic profiles with good accuracy
- "Over time, predictions will get more precise...
- ... thus, the results of this work will be of greater consideration in the current discussion on genome privacy protection."

How we protect against identification?

– Mask known predictor sites?

